在生物脫氮有氨化反應,硝化反應,反硝化反應三個階段,廢水中的氨氮首先必須被硝化或轉化成亞硝酸鹽和硝酸鹽,然后在反硝化過程中,硝酸鹽將被作為細胞呼吸過程中氧化簡單碳化合物的供氧體被還原成氮氣反硝化細菌??梢苑譃樽责B(yǎng)反硝化細菌和異養(yǎng)反硝化細菌,其中大部分反硝化細菌為異養(yǎng)反硝化細菌,需要利用有機碳源進行反硝化。因此,以去除硝酸鹽為目標的反硝化過程必須要有易生物降解的碳源存在。
當反硝化過程中碳源供應不足時,會使反硝化速度降低,這是因為當有機碳供應不足時反硝化細菌會利用自身的原生質(zhì)進行內(nèi)源反硝化,最終減少細菌的細胞質(zhì)。所以當進水溶解性有機物不足而脫氮要求很高時, 則需要通過補充化學物質(zhì)以提供反硝化過程所需要的碳源。
可以通過向厭氧池或者缺氧池的進水口投加外碳源,以補充碳源的方式提高反硝化速率,但是如果外投碳源過量或選擇碳源不當,不但增加了系統(tǒng)運行費用,還使污水處理廠COD有超標風險。而使用符合碳源不會引起出水COD超標。我們會根據(jù)生化系統(tǒng)的情況,由技術人員評估確定,給您提供投加方案,保證出水總氮和COD雙達標!
復合碳源處理廢水中的硝態(tài)氮
廢水中的硝酸根離子可采用離子交換、膜滲透、吸附及生物脫氮的方法進行處理。其中以生物脫氮法應用得最為普遍。
生物脫氮法處理硝態(tài)氮使用的是反硝化法,即利用硝酸根離子通過反硝化細菌降解轉化為氮氣的過程。而通常污水中的C/N比不能滿足微生物需求,需要添加復合碳源等外來碳源。傳統(tǒng)的AAO、氧化溝、SBR等傳統(tǒng)工藝占地面積大且對TN去除率不如反硝化濾池,因此,現(xiàn)在多采用反硝化生物濾池。
反硝化濾池集生物脫氮和過濾功能一一體,利用附著生長在濾料表面的反硝化細菌通過反硝化反應把硝態(tài)氮轉化成氮氣,從水中逸出,從而達到脫氮的目的。
濾池處理硝態(tài)氧具有脫氮效率高、占地面積小、易操作維護、污泥產(chǎn)量少及運行成本低等特點,而濾池碳源可為反硝化細菌提供反應所需的電子供體和能量,將硝態(tài)氮和亞硝態(tài)氮轉還原成氮氣。